The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 X 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 2 2 2 2 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2 0 2 0 2 0 2 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 2 2 2 2 2 2 0 0 2 2 0 2 2 2 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 2 2 0 2 2 0 2 2 2 0 2 2 2 2 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 2 2 2 2 0 2 2 0 2 0 0 0 2 2 0 2 2 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 2 2 0 2 0 0 2 0 2 0 2 2 0 0 2 2 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 2 0 2 0 2 0 2 2 0 2 0 2 2 0 0 2 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 2 0 0 0 2 0 0 2 0 0 0 0 2 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 2 2 2 2 2 0 0 2 0 2 0 0 0 2 2 2 2 generates a code of length 34 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 24. Homogenous weight enumerator: w(x)=1x^0+188x^24+360x^28+994x^32+5120x^34+944x^36+452x^40+104x^44+28x^48+1x^64 The gray image is a code over GF(2) with n=136, k=13 and d=48. This code was found by Heurico 1.16 in 49.6 seconds.